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Optimal co-ordinates were introduced by Kaplun (1954) as a result of his study on 
the role of co-ordinate systems in boundary-layer theory. In  this paper the basic 
ideas of optimal co-ordinates are examined and many restrictions of Kaplun’s optimal 
co-ordinates are removed. His rule for constructing optimal co-ordinates is found to 
apply unaltered to axisymmetric flows, to flows with oncoming streams containing 
vorticity, to free boundary layers such as jets, to free-convection flows and to com- 
pressible flows. It is also extended to unsteady boundary layers, and to three- 
dimensional boundary layers using a pair of stream functions. 

1. Introduction 
One of the first questions that an investigator asks upon having formulated a 

physical problem is: what co-ordinate system should be employed to solve the 
problem? The choice of a particular system is often guided by the geometry, a t  other 
times by convenience, and sometimes by the physics of the problem. The method of 
optimal co-ordinates, introduced by Kaplun ( 1  954) in his novel papers on boundary- 
layer theory and singular-perturbation techniques, is a means of including the boun- 
dary-layer physics in the choice of the co-ordinate system. 

The purpose of this paper is two-fold. Firstly, it seeks to emphasize the generality of 
Kaplun’s optimal-co-ordinates theorem. Secondly, it seeks to review the efforts that 
have been made to utilize and describe optimal co-ordinates. Kaplun’s (1954) paper 
was limited to the study of laminar, incompressible, steady, two-dimensional un- 
separated flow past a solid body, with an irrotational outer flow. No attempts were 
made to investigate the generality of Kaplun’s results until the efforts of Legner 
(1971). The recognition of Kaplun’s work may once again be enhanced by the realiza- 
tion that his rule for constructing optimal co-ordinates applies unaltered to axisym- 
metric flows, flows with oncoming streams containing vorticity, free boundary layers 
(such as jets), free-convection flows, compressible flows, and to uncoupled and coupled 
thermal boundary layers. The reasons behind these generalizations are described in 
this paper. In  addition, rules for finding optimal co-ordinates are extended to un- 
steady boundary layers and to three-dimensional boundary layers using Clebsch’s pair 
of stream functions. 

Section 2 puts together for the first time an extensive examination of the literature 
on the use of Kaplun’s optimal co-ordinates. Some of the less important references 
are omitted here (cf. Legner (1971) for a more complete review); we summarize the 
critical efforts. We also point out some of the misconceptions that have crept into the 
literature. Furthermore, some connections between optimal co-ordinates and the 
determination of uniformly valid asymptotic solutions are described. 
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The review in $ 2  is followed in $ 3  by a discussion of the generality of Kaplun’s 
work. Sections 4 and 5 describe the extensions to unsteady and three-dimensional 
boundary layers, respectively. Optimal co-ordinates are determined utilizing the 
analysis developed herein for two specific examples in $ 6 .  One example is the rota- 
tional flow past a flat plate (Murray 1961) and the other is the initial boundary-layer 
development on a circular cylinder started from rest (Wang 1967). Concluding remarks 
are presented in § 7.  

2. Review of optimal co-ordinates 
We first summarize Kaplun (1954). Utilizing the concepts of distinct limit processes 

in separate (but overlapping) regions of a viscous boundary-layer flow problem 
Kaplun argued that since the boundary-layer limit, which depends upon the co- 
ordinate-system used, leads to the successive boundary-layer system of equations i t  
must also be true that the boundary-layer solutions are co-ordinate-system-dependent. 
This realization, as well as the co-ordinate-system independence of the sequential 
potential flow problems, enables him to look for a co-ordinate system such that the 
classical (first-order) boundary-layer problem contains both the basic inviscid flow 
and the second inviscid flow term - the displacement flow. He finds such an optimal 
co-ordinate system (his theorem 2). Kaplun also delineates the relationship between 
boundary-layer solutions in two different co-ordinate systems (his theorem 1) .  Three 
examples from classical boundary-layer theory illustrated the content of the two 
theorems. 

The most authoritative presentation of Kaplun’s work is given by Lagerstrom 
(1964) in his survey of laminar-flow theory. Van Dyke (1964) gives a good discussion 
of the effect of changing the co-ordinate system on the classical Blasius problem; in 
particular, he compares solutions for optimal, semi-optimal, and ordinary? co-ordinate 
systems. Howarth (1959) details the main ideas and remarks that the importance of 
Kaplun’s work resides upon improving the boundary-layer approximation. These are 
general references. 

Most of the applications of Kaplun’s ideas have been related to the choice of a 
specific co-ordinate system. Parabolic co-ordinates have been most popular. They are 
the optimal co-ordinates for the classical Blaius flat-plate problems as demonstrated 
by Kaplun. Murray (1961, 1965a, b )  uses parabolic co-ordinates in his various studies 
of the flat-plate problem. Davis (1967) employs parabolic co-ordinates for his series- 
truncation analysis near the flat-plate leading edge. Some time later, van deVooren 
and Dijkstra (1970) examined the same leading-edge problem more carefully by 
numerically integrating the Navier-Stokes equations written in parabolic co-ordinates 
by means of a finite-difference technique. They argued that the optimal co-ordinates 
obtained from boundary-layer theory should also be preferable for the complete 
Navier-Stokes equations. This idea is specifically corroborated by some exact solu- 
tions of the Navier-Stokes equations in which the boundary-layer approximation 
optimal co-ordinates lead to the co-ordinates of the exact solution (e.g. Hiemenz’s 
(191 1) problem and Cartesian co-ordinates). Van Dyke ( 1970) uses parabolic 
co-ordinates in his article on channel entry in which he conjectures that parabolic 

general, only matches with the outer flow. 
t The use of an ordinary co-ordinate system provides a boundary-laycr sollition wliicth, i n  
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co-ordinates are presumably nearly optimal for a cascade of flat plates. In  two related 
papers, Wilkinson (1960) and Townsend (1965) solve the steady three-dimensional 
boundary-layer flow past a flat plate with a parabolic leading edge for the incompres- 
sible and compressible flow situations, respectively. They discover that a degenerate 
form of paraboloidal co-ordinates provide boundary-layer velocity components that 
are optimal. These results reflect the intimate relationship between ‘generalized ’ 
parabolic co-ordinates and the first-order laminar boundary layer on flat plates. 

Some investigators have either been naive about the content of Kaplun’s theorems 
or simply misleading. As a first example, we consider Kadambi’s ( 1  969) examination 
of the natural convection of a heated plate in a gravity field. Without discussion, 
Kaplun’s theorems are utilized to obtain non-parabolic optimal co-ordinates ; no 
mention is made of the fact that the boundary-layer variable for problems driven by 
the boundary layer (with the first-order potential stream function equal to a constant) 
is arbitrary, or of the fact that there is no a priori reason to assume that the coupled 
temperature expansion plays no direct part in the determination of the optimal 
co-ordinates. Schultz-Grunow & Henseler ( 1968) confuse optimal and semi-optimal 
co-ordinates. A more serious misinterpretation is exemplified by Mills (1965). He 
confuses optimal co-ordinates and the von Mises transformation in his paper on flow in 
a square cavity. Lagerstrom (1964, p. 214) has anticipated this difficulty and remarks 
in a footnote that the von Mises transformation of the derived boundary-layer equa- 
tions may simplify the equations (and solutions) but it does not alter the flow field 
obtained from the equations. 

The ideas of optimal co-ordinates have also become enmeshed with other singular 
perturbation techniques. The method of Lighthill, as well as the use of parabolic 
co-ordinates (optimal for the semi-infinite flat plate), is considered by Goldburg & 
Cheng (1961) in their study of the trailing-edge boundary layer. They discover an 
anomaly in the application of these two methods; the methods differ by an order of 
magnitude in the estimation of the extent of the upstream influence for the trailing 
edge. They speculate that neither approach is correct. Recent examinations of the 
trailing-edge problem (using triple decks) have shown that the full Navier-Stokes 
equations must be used near the edge; hence, the Lighthill method which utilizes the 
boundary-layer equations cannot be valid and the use of parabolic co-ordinates 
(Kaplun-optimal) will not be completely effective either, since the trailing edge will 
necessitate modifications to the optimal co-ordinates. That is, second-order boundary- 
layer theory, which presumably describes the Navier-Stokes situation more accu- 
rately, will alter Kaplun’s optimal co-ordinates. Segel (1960) related the ideas of 
uniform asymptotic expansions to optimal co-ordinates. A non-fluid-mechanical 
application of Kaplun’s ideas was considered by Zauderer (1973), who introduced 
two co-ordinate systems in his study of diffraction problems. Singular perturbations 
and optimal co-ordinates are closely related. O’Malley (1968) in his survey of singular 
perturbations mentions Kaplun’s optimal co-ordinates for Oseen flow past a flat plate 
(parabolic co-ordinates) but illustrates an alternative way of finding the exact solution 
by employing a ‘ boundary-layer stretching co-ordinate ’ which increases the number 
of independent variables by one. 

This review has been, of necessity, brief. It has sought to emphasize some of the 
more significant applications and discussions of optimal co-ordinates. It must be 
evident to the reader that, from the above survey of the literature two important 
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points can be made: firstly, no-one has heretofore used opt,imal co-ordinates to solve 
a problem which could not be solved in any other manner, i.e. there has been no 
‘ critical ’ application; secondly, no one has critically examined the generality of 
Kaplun’s paper and whether it is possible to extend the idea to higher approximations. 
This paper emphasizes the generality of Kaplun’s (1954) work. 

3. The generality of Kaplun’s theorem 2 
The discussion in this paper will be limited to the realm of boundary-layer theory 

that includes the flow due to the displacement thickness. An important aspect of the 
boundary-layer approximation is its coordinate-system dependence. The concept of 
co-ordinate-system dependence is explained below by appealing to a variety of 
approximations to the flow equations. The governing fluid-dynamical equations, the 
Navier-Stokes equations, describe the behaviour of the physics of fluids and, hence, 
are necessarily co-ordinate-system independent. These equations can be written in 
vector form and thereby have vector (or co-ordinate-system-independent) solutions. 
Approximations to the Navier-Stokes equations may or may not have vector solutions. 
This depends upon the character of the approximation. The incompressible inviscid 
approximation (the Euler equations) is a vector approximation since the entire viscous 
term is neglected, leaving a system of equations that is vectorial. The first approxi- 
mation in low-Reynolds-number flow (the Stokes equations) is also a vector approxi- 
mation because in this case the entire convective term is neglected. These vector 
approximations must have vector solutions. On the other hand, the boundary-layer 
approximation, wherein viscous diffusion is preferen tially neglected in the stream 
direction as opposed to the boundary-layer direction, is a non-vector approximation. 
Boundary-layer solutions are therefore non-vector (or co-ordinate-system-dependent) 
solutions. The genesis of optimal co-ordinates resides in the last statement. 

A second important point regarding optimal co-ordinates relates to the generality 
of the method. The specific details of the boundary-layer equations under various 
approximations relating to the dimensionality, the time-dependence or the compressi- 
bility, for example, are not relevant to the matter of optimal co-ordinates. It is only 
the structure of boundary-layer theory as derived rationally using the method of 
matched asymptotic expansions (cf. Van Dyke 1962) which is significant. More 
specifically, it will be shown that the exact satisfaction of the (unapproximated) 
continuity equation using the stream function(s) is a critical element in the determi- 
nation of optimal co-ordinates. 

The classical fluid-mechanical system of equations can be written in generalized 
tensor form following Lagerstrom (1964). I n  this form one can consider a general 
curvilinear co-ordinate system ti. Legner ( 1  971) found it convenient to put this system 
into dimensionless form; the important parameter of this system is the Reynolds 
number R = c2 = prlJrL,/,Lt, where all quantities with subscript r are effective 
reference quantities. As remarked previously, there is no need to write out the dyna- 
mica1 equations; however, i t  is essential to utilize the continuity equation. This 
equation (in Lagerstrom form) is 

where p is a density in the sense of tensor analysis, and ui are the contravariant com- 
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ponents of the velocity vector and S = trU,fL,  is a constant. One can write the pre- 
ceding equations in the form Kaplan used by setting p = g*p and tii = uigt where p" 
is now an absolute scalar, .iii is a contravariant vector density, and gb is the square root 
of the absolute value of g,,, the metric tensor. I n  order to distinguish the possible 
situations when the continuity equation can be satisfied identically, we must consider 
three separate aspects: time dependence ( t ) ,  compressibility (p) ,  and dimensionality 
(e,ui) .  The understanding of these aspects leads to only three types of situation 
(one-space-dimension problems are not relevant to the discussion). 

The possibilities are outlined below. 

Type  1. One stream function (2-dimensional) : 
( a )  steady, incompressible; (b )  unsteady, incompressible; (c )  steady, compressible. 

T y p e  2. T w o  stream functions (3-dimensional) : 
( a )  steady, incompressible; (b )  unsteady, incompressible; (c )  steady, compressible. 

T y p e  3. Restricted one (two) stream functions: 
( a )  unsteady, compressible (2-dimensional) ; (b)  unsteady, compressible (3-dimensional). 

Little comment is necessary for the problems of type 1. Problems analyzed using 
one stream function are familiar to most investigators. The problems encompassing 
type 2 are more complicated. Even though researchers have analyzed three-dimen- 
sional problems (e.g. using velocity components and pressure) there appear to be few 
analyses in the literature using a pair of stream functions. The reason for this is the 
complexity (and nonlinearity) introduced in defining the two-stream functions; that 
is, whereas a velocity component is given by one derivative of the stream function in 
type 1, it is given by a combination of four derivative terms in type 2. Two stream 
functions for three-dimensional flows are described in $ 5 .  The problems of type 3 
are even more complicated. We refer to these problems as restricted because even 
though the continuity equation can be satisfied using generalizations of the Howarth- 
Dorodnitsyn transformation (see Stewartson 1964, p. 123 for the two-dimensional 
case), we must recognize that these transformations belong to  first-order boundary- 
layer theory only. 

These preliminary remarks may appear unrelated to the matter of optimal co- 
ordinates, but it will become evident that the rational development of boundary-layer 
theory must utilize the stream function. In a real sense, the stream surfaces of the 
oncoming flow and of the displacement flow are natural physical entities. How do these 
remarks relate to Kaplun (1954)? We make the connections to Kaplun by quoting a 
number of his results using our notation. If we develop the theory using the stream 
function, we are concerned with two terms of the Euler expansion 

II. I I .1+"2+ . . . ,  (2) 

(3 )  

and a single term from the boundary-layer expansion 

@ N €Y,+ ... . 

Further, if 71 = 0 defines a solid wall (or some line or axis for free flows) and 6 is a stream- 
wise co-ordinate, then it can be shown using the limit-mwtchingprinciple of Van Dyke 
{ 1964, p. 90) that  the boundary-layer expansion behaves as follows near the edge of 
the layer: 

$ CYl $ l v w r + ~ I I . 2 w + ' . . ,  (4) 
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as ?j = y / ~  + co. We retain only two terms, anticipating matching with (2). Optimal 
co-ordinates art: defined by a much stronger condition than matching. They require 
the boundary-layer-derived flow to contain the Euler flow to some order. Specifically, 
in order for the first-order boundary-layer solution to contain the external flow (i.e. 
the main flow g1 plus the flow due to  the displacement thickness $J we must satisfy 
the following relations : 

$1 = $ l l l W %  $2 = $2w. ( 5 %  b )  

Note that the subscript w refers to the limit of an outer flow variable as one tends to 
the wall (y --f 0). Hence, $2w = $2w([, 0). The co-ordinates obtained from the inversion 
of ( 5 )  using Kaplun's correlation theorem provide optimal co-ordinates. This theorem 
(no. 1 )  states that if therelationship between two co-ordinate systems is f [  = ( ( y ,  cr) and 
y = y(y,  cr), with 7 = 0 and cr = 0 prescribing the body surface, then the equivalent 
boundary-layer solution in the ( y ,  u)-system is found by replacing 6 by ( (y ,  0) and 7 
by (ay/aa),=,a. These expressions can be written in the following form: 

6 = 9l(YL 7 = g,(y)a, (6% b )  

where g, and g, are simply functions of y. These functions can be chosen to suit the 
investigator's needs; if we substitute (6) into (5)) we find 

$1 = $ l~W[9 l (Y)192(Y)  c9 @2 = $.zw[g,(Y)I. ( 7 %  b )  

Using our stated freedom, we select g, such that y = $, and g,(y) = l/$f17w[gl(y)] so 
that u = $l. This particular set of y and cr is a pair of optimal co-ordinates. The most 
general set is given by utilizing (6); hence one obtains Kaplun's important result 
(theorem no. 2) 

With these results as background, we can proceed to discuss the generality of Kaplun's 
results. 

(i) Axisymmetric, incompressible, steady $ow 

Consider the continuity equation (1). Upon introducing a scalar density p" using 
p = gjp", and considering Qf = giui as contravariant-vector-density coinponen ts, we 
can write ( 1 )  as 

[opt =f1($2), y o p t  = $lf2($2).  (8% b )  

(9) 

Equation (9) is preferable to forms containing g:. If we now assume a/aE3 is identically 
zero, (9)  becomes 

Equation (10) is valid for both two-dimensional flow and axisymmetric flow; thus we 
satisfy (10) identically with a two-co-ordinate stream function $, i.e. 

Since the definit,ion of $ in (1 1) is independent of the assumption of axisymmetry, 
the axisymmetry (with g,, + 1) manifesting itself only in the boundary-layer momen- 
tum and energy equations, and since the optimal-co-ordinate development (as outlined 
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above) is independent of these equations, it follows that Kaplun’s result applies un- 
altered to axisymmetric flows. 

(ii) Euler flow with worticity 

It is not necessary to restrict the outer flow to be governed by Laplace’s equation 
(irrotational flow). The rotational vorticity equation has solutions which are inde- 
pendent of the co-ordinate system. These vector problems, which govern the outer 
flow, have vector solutions and they can be matched in the usual asymptotic sense to 
the boundary-layer solution. Consequently, Kaplun’s result applies to flows with 
rotational external streams. 

(iii) Free jets 

Free jets form a class of boundary-layer flows where the outer flow is zero; i.e. $., = 0. 
Jets differ from surface boundary layers in that a symmetry condition and a global 
integral condition replace the typical surface conditions. These two conditions do not 
alter the optimal coordinates development. We must, however, examine (7) .  Equation 
(7 a )  is satisfied identically, independently of co-ordinate-system concerns. It then 
follows that the optimal co-ordinates are given by 

Copt = fl($ZL ( 1 2 4  

qopt is arbitrary 

(with tthe proviso that (topt, qopt) define a co-ordinate system). J 1. (12b) 

(iv) Free Convection 

Natural or free convection boundary layers are another class of flows for which 
$., = 0; however, natural convection phenomena are considerably more complicated 
than incompressible free jets since the momentum equation is coupled to the energy 
equation through the Boussinesq buoyancy term. This complexity does not manifest 
itself in the determination of optimal co-ordinates because, as demonstrated in 8 3 (v), 
the addition of a dependent variable does not alter the stream-function-determined 
optimal co-ordinates. It then follows that the optimal co-ordinates for natural con- 
vection are given by (12a, b ) .  Kadambi (1969) was apparently the first to use 
5 = fl($z) without explanation in order to determine opt,imal co-ordinates for a 
specific free-convection problem. We note that free-jet flows and natural convection 
flows are characteristic of situations wherein the boundary layer drives the flow. 
Therefore, it is not surprising that the optimal coordinates are determined using the 
same equations. 

(v) Coupled dependent variables 

Consider a flow problem with dependent variables such as the temperature, density, 
pressure, concentration, etc., coupled to the stream function $. We will show that 
stream-function considerations dominate the optimal co-ordinates. Let us assume 
that we have some hypothetical flow problem which can be reduced to the solution 
of two simultaneous equations in $ and 4, where q9 is the stream-function and Q, 
represents any other dependent variable. Suppose that the exact equations are 
a($, 4; c )  = 0, b($, 4; E )  = 0 and assume that all boundary conditions are satisfied 
implicitly in the subsequent discussion. The inner limit applied to the problem 
provides A,(Y,, Q1) = 0 and B.,(U’,, @.,) = 0; the outer limit provides a,($.,, $,) = 0, 
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b,($,, = 0 in the first approximation and a,($,, $,) = 0,  b2($2, q5.J = 0 in the 
second approximation. Let the boundary-layer solution be given by Y,(p, 5 )  and 
a,@, a). Using our stream- unction-de~ermined optimal co-ordinates (c*,  ?*), we can 
rewrite the solution as YF(f*, i j * )  and a;"((*, 7"). By virtue of its construction (this 
is our hypothesis), Y;" now contains $, + s $ ~  instead of merely matching with $, + B $ ~ ,  

as Y, does. Consider @;". Suppose @: does not contain $, +I$, as 1" becomes large, 
but' instead becomes 6, + &. The quantity 6, + €6, implies from (a ,  = 0, b, = 0) that  
the external stream function is $, + eG2. This, however, contradicts our hypothesis 
that  YF contains $, + qh,. Hence, we conclude that contains q5, + ~ q 5 ~ .  The same 
statement applies to other additional dependent variables. The above arguments are 
summarized as follows. If the boundary-layer stream function, as a dependent variable, 
contains the outer field in the optimal-co-ordinate sense, then any coupled boundary- 
layer dependent variable must also contain the outer field in an optimal sense due to 
the connection among the dependent variables. 

(vi) Compressible $ows 

We now examine a real compressible flow with significant density variations. Consider 
the steady compressible continuity equation 8(p"Ci)/afi  = 0. For the two-co-ordinate 
system, this equation reads a(p"El) /af l  + a(p"C2)/af2 = 0. If we let p"G1 = n1 = m and 
p"G2 = n2 = n, we then obtain 

am an -+- = 0. a61 a p  
The introduction of m and n allows us to introduce a stream function $ as follows: 

Clearly, (14) satisfy (13) exactly; the remaining compressible equations can then be 
written in terms of $, p, and T. Since the differential equations were not employed 
for the incompressible problem , and since the stream-function expansion dominates 
the optimal co-ordinates as argued in the preceding discussion, we assert that the 
structure of the compressible-stream-function expansions dominates the compressible- 
flow optimal co-ordinates. 

Proceeding as before for the incompressible case we write $ N $, + E $ ~  + . . . , in the 
outer field, and $ N e Y ,  + . . . , in the inner field. We can write these expansions since 
the compressible boundary layer is known to be qualitatively similar to the incom- 
pressible one. Note that we can freely manipulate the density p" since it can never be 
zero. The basic analysis of the incompressible development applies without any 
changes. Hence, ( S a ,  b )  provide the optimal co-ordinates for the compessible boundary- 
layer problem. 

The extension of (8a ,  b)  to compressible flow is a remarkable result. The other 
dependent variables of the problem are intimately connected to the stream function; 
further, the result is independent of the physics: gas law, viscosity-temperature 
relation, heat-conductivity-temperature relation, etc. That is, the result is general 
and free of any difficulties if the flow does not contain shock waves. 



On Kaplun’s optimal co-ordinates 387 

4. Unsteady boundary layers 
Unsteady boundary-layer theory introduces a third independent variable into the 

development. This theory has not been analysed to the extent of two-co-ordinate 
flow. There are two types of problem in the literature - the small-time formation 
problem (or starting problem) and the periodic flow problem. The difference between 
such problems is the relative importance of the nonlinear convective terms. Starting- 
process problems are linear, whereas developed unsteady flows are nonlinear. For the 
purposes of determining optimal co-ordinates, we need not distinguish between the 
two types of problem. We proceed directly to the heart of the analysis, i.e. to invert 
(5a, b). We recognize that for incompressible unsteady flows we can satisfy the con- 
tinuity equation exactly with expressions (1  1). In  the present context, it is understood 
that $ = $([, 7,7) where T is the time co-ordinate. Furthermore, the terms with sub- 
script w (evaluated at  the wall) must be regarded as functions of both [ and 7. To be 
specific, we write out (5a, b) as 

If we now introduce the correlation co-ordinate transformation expanded for three co- 
ordinates, letting w be the new time co-ordinate, then the generalization of (6a )  and 
(6b) is 

The introduction of (16) into (15b) permits us to select 

$1 = $l7,,.(& 7) 7, $2 = $2w(6 ,7 ) .  (15% b) 

6 =. 91(Y,  w ) ,  r = 92(Y,  w )  fl, 7 = g3(y, 0). 

92(Y,  w )  = 1 /$ l7J91(Y> w ) ,  g,(y, 0)l 

(16% b, c )  

so that r~ = $l. We saw the same result previously. I n  order to determine the optimal 
co-ordinates, we must satisfy (15b). This cannot be done in general since the sub- 
stitution of (16) into (15) represents a system of two equations in three unknowns. 
This dilemma is resolved by assuming that either the time dependence or the surface- 
co-ordinate dependence is passive. 

(i) Time-dependence passive (g3(y, w )  = w ) .  Then the optimal co-ordinates become 

[opt =f1($2,w),  r o p t  = $lf2($2, w ) ,  Topt = w.  (17% b, c )  

<opt = Y, r o p t  = $ 1 f 2 ( r 7  $21, ‘Topt = f3(Y3 $21, (18% b, c )  

(ii) Surface-dependence passive (gl(y, w )  = y) .  Here the optimal co-ordinates become 

where fl, f2, f 3  are arbitrary functions. Note that Legner (1971) was able to obtain 
more general optimal co-ordinates for higher-order unsteady boundary-layer approxi- 
mations. These results, (17 )  and (18), should not appear unexpected. The time 
co-ordinate appears to play the same role as the surface co-ordinate in optimal co- 
ordinates. This parallelism between the time evolution of, say, the Rayleigh-problem 
boundary layer and the spatial development of the Blasius boundary layer is well 
known. It is naturally evident in the present context. 

As remarked in 3 3, a stream function can be defined for unsteady two-dimensional 
compressible flow (see Stewartson 1964, p. 123). This circumstance allows the deter- 
mination of optimal co-ordinates as described above with the density playing an 
inessential part. It must, however, be emphasized that the generalization of the 
Howarth-Dorodnitsyn transformation as described by Stewartson will only permit 
the determination of optimal co-ordinates for first-order boundary-layer theory. 
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5. Three-dimensional boundary layers 
The elements of three-dimensional boundary-layer theory have been developed 

by Legner (1971) using a pair of stream functions, $ and x.  For incompressible flow, 
the velocity vector satisfying the continuity equation div q = 0 identically is 

q = grad $ x grad x. (19) 

Ths co-ordinates (<,r,C) will be used, with r,~ = 0 again denoting the surface of 
interest and y the cross-stream or third co-ordinate. The boundary conditions a t  
infinity are $ = 1crE(.$, 7,C) and xE(6,y, y), where the subscript E denotes a potential 
(or Euler) flow. Before we write the surface conditions, let us write out (19) for the 
three components of velocity when (19) is written in tensor form, i.e. Gi = eikl@,kX, , :  

These relations are considerably more complex than the single-stream-function rela- 
tions. At the (impermeable solid) surface we desire $ = 0 a t  7 = 0. This condition 
implies that the surface of interest is a stream surface; i t  also immediately gives 

Thevelocitycomponents thusreadcl = (a$ /@)  (axlag), G2 = 0, G3 = - (a@/av) (ax/a<)  
All of these relations indicate that if the 7 = 0 surface is a stream surface, there is a 
flow on the surface (Gl, G3 + 0) and no flow through the surface (G2 = 0). The no-slip 
condition requires G1 = .ii3 = 0 at the surface. According to the previous relations for 
G1 and G3, this could be accomplished in two ways: we could require a@/aq = 0 or 
ax/a< = ax/a[ = 0 a t  7 = 0. The latter conditions imply that x = constant ( =  zero). 
If x = 0 on the surface, G1 = G2 = G3 = 0; however, this would appear to represent a 
degenerate situation where the notion of streamlines is lost. Furthermore, if we were to 
specialize our problem to two dimensions, where x = 5, we have axlac + 0. This 
would violate the above ax/aC = 0 condition. I n  order to avoid this situation, we 
choose the first of the two conditions, i.e. a@/@ = 0 a t  7 = 0. This will make all 
velocity components zero a t  the surface. Summarizing then, the surface conclitions are 

a$ 
ar $ = - = 0, x $: const. a t  7 = 0; x, xt, x7, xc bounded. 

We could be more specific about the conditions on x; however, this is not necessary 
since we develop the optimal co-ordinates without recourse to other dependent varia- 
bles, as remarked previously. That is, we can work with $ alone. 

The outer expansion for @ will be ' $ 1 + 4 2  t ..., (23) 
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and the inner expansion will be 
II. EYl(0 795) + . . . (24) 

The extra third co-ordinate 6 will play the same role as the time co-ordinate in un- 
steady boundary-layer theory. Consequently, it becomes easy to invert the conditions 
for optimal eo-ordinates; they reud 

$l?p(L 517 = $1' $ z w ( 5 , 6 )  = $2. ( 2 5 %  b )  

Equations (25a, b )  are completely analogous to the relations derived for (15a b) .  
We can also invert these relations, as was done for unsteady boundary-layers, in 
order to obtain optimal co-ordinates. Two cases arise again because both 6 and 5 are 
' timelike ' . 

(i) Cross-stream dependence 6 passive. The optimal co-ordinates become 

<opt = f l ( $ Z ,  4, 70Pt = $lfZ($Z' A),  5 0 P t  = A.  (2% b, c )  

Copt = 79 rapt = $ l f Z ( $ Z ' 7 ) '  Copt = f 3 ( $ 2 , 7 ) ,  (27a, b, c )  

(ii) Streamwise dependence 6 passive. The optimal co-ordinates become 

where once again fl, fz, and f 3  are arbitrary functions. Note that the transformation 
of co-ordinates utilized in this three-dimensional situation was [ = [(r, CT, A ) ,  
7 = q ( ~ , a , A ) ,  and 6 = 5(7, cr,h). A more general set of optimal co-ordinates for 
three-dimensional boundary layers is obtained (Legner 197 1) when higher-order 
boundary-layer approximations are considered. 

6. Specific examples 
I n  this section optimal co-ordinates are determined for two specific examples 

utilizing the analysis developed in the present paper. The examples illustrate the 
manner in which optimal co-ordinates are selected for two generalizations of Kaplun's 
work: generalization to a rotational outer flow and generalization to unsteady boundary 
layers. 

Rotational flow past a flat plate 

Murray's (1961) solution for the boundary-layer on a flat plate in a stream with uniform 
shear is investigated. The problem has two features that are important to optimal 
co-ordinates. First, the Euler flow field is rotational; second, Kaplun's optimal co- 
ordinates for the flat plate without shear (parabolic co-ordinates) were used to develop 
the solution. These (parabolic) co-ordinates are not optimal when the outer flow is 
rotational. The free-stream velocity in the plate direction is 

u = U+Cloy, (28) 

where all quantities are dimensional. If we scale velocities by U ,  lengths by an artificial 
length 1, stream function by U1, and define a vorticity number N = Cl,l/U and 
Reynolds number R = Ul /v ,  then (28) in dimensionless form reads 

6 = 1+Ny". (29) 

The elements of boundary-layer theory in terms of dimensionless parabolic co-ordinates 
defined by 2 + iy" = ( y  + are as follows: 

$1 = 2yS+ 2Ny2P,  $2 = -&, (30a, b )  
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where $ = Blasius-function constant. The boundary-layer expansion with E = R-4 
is, to first order, 

$ 4 Y f m  + ... I, 
wheref" + f' = O , f ( O )  = f ' ( 0 )  = O,f'(m) = 2. The optimal co-ordinates may be found 
using (30); we choose f l ( s )  3 s andf,(s) = 1 in the optimal co-ordinate result ( 8 a ,  b )  
and obtain the following specific co-ordinates : 

g zs -By, 7 = 2y6+ 2Ny262. (32a, b )  

In  order to rewrite (31) in terms of [,7 we require the following derivative for the 
correlation transformation a6/@. We proceed by differentiating (32 b )  implicitly with 
respect to 7 to find 

We are interested in S?, a t  7 = 0 (corresponding to 6 = 0); hence (33) implies 

1 = 2y,6+ 276, + 4N(y2667 + $2yy7). 133) 

(&J,=, = 8 Y ( L  0). (34) 

The direct application of the correlation transformation (retaining implicit expressions) 
gives 

In  order to verify our theory, we examine (35) for large 7 ;  this requires the asymptotic 
expansion for f ,  which reads f (s) - 2s -p+ . . . . The introduction of this expansion 
gives 

from (35), for large 7.  The bracket term is identical to 5 or $2 and 7 = $l. Consequently, 
we have verified that the solution in <, 7, is indeed, an optimal one as the theory states. 
The co-ordinate system found (32) is 'parabolic' with respect to y, 6, as well as para- 
meter-dependent upon N .  

$ - 7+d-yY(t,O)/?l+... (36) 

Init ial  development of the boundary luyer on  a circular cylinder started from rest 

Wang (1967) investigated the flow past a circular cylinder that is started impulsively 
from rest. This example is particularly interesting since it is an unsteady boundary- 
layer problem with complex solutions in three independent variables. In  addition, the 
geometry is particularly nice with a clearly defined length - the radius of the circular 
cylinder. We avoid the obvious geometry sketch and proceed with the expansions for 
thc stream function (incompressible flow). They read 

(37a)  

(37b) 

where r is the dimensionless radius, 0 is the angular variable, t is the time variable, 
r* = ( r  - l) /c,  and t is defined as the small time parameter. This parameter is inversely 
proportional to the Reynolds number (cf. Wsng 1967, equakion (1)). The individual 
elements of the problern are as follows 

@ - $I@, 0) + e$,(r, 0, t )  + . .a, 
N cY1(F, 0, t )  + . . .) 

- 

= (r-r-l)sinO, (38a) 

(38b)  

(38c) 

$, = -ar-l(yt)t sin 8, 

irl = 4(14)9 [5-~erf(.1:+~-4(e-g'- 1)lsin0, 
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where a = 4n-4, v = constant, 5 = ip(vt)-*. In $4 we showed that two 'types' of 
optimal co-ordinate are possible for unsteady flow. 

(a )  We will first utilize (1 7) to  elzoose an optimal set of co-ordinates (time-depen- 
dence passive). Hence, let 

a$, (1 +r*)2-  1 

4$2 4 ( V t ) +  
'11 = -- = , 7 r t ,  

where r* = r -  1 .  

implicit derivat,ive - r;, i.e. 
In  order to verify that (39 )  is an optimal co-ordinate set, 

Also, from (39a,) 
[(r* = 0,8,  t )  = sin 8. 

From the correlation transformation r* becomes 7.; I T = o  = 72(v t ) t .  The previous 
similarity variable < r ? and, hence the boundary-layer solution reads as follows 

142) 

Specific notice should be taken of the tri-separated form of the solution in the ([,?, t ) -  
system. The expansion of the square bracket for large 7 gives 

$ - EY, = € 4 ( v ~ ) * ~ ~ ~ - ~ j e r f c ~ j + ~ - + ( e - ~ -  I)]. 

$ N €4(V t )+"T j -d]+  ... . ( 4 3 )  

Substitution for (g, 7) gives $ N $1 + qh2 + , . . , hence the co-ordinates (39 )  are optimal. 
( b )  We now utilize (18) to choose optimal co-ordinates (surface-co-ordinate depen- 

dence passive). Let 

6 = 8, 7 = $,/4 sin 8 = a[( 1 1 + T * )  - (1 + 7 9 - 1 1 ,  (44a, b )  

(44c) 7 = $J(-asinO) = (vt)4/(r*+ I ) .  

From (44), r:lT=o = 2 and 7(r* = 0,8 , t )  = (vt):. Hence, 7 becomes 27 in the cor- 
relation transformation and 

y1 = 47[7/7 - (7/7) erfc ( T / T )  + n-i(e-(+)* - I ) ]  sin 0. 

Y, - 47(7/7 - n-4) sin O + . . . . 
The large-? expansion of this solution is, as before, 

(45) 

If we substitute for 7 and T j ,  we find that once again $ N $, + qk2 + . . . . The comparison 
between co-ordinates (39 )  and (44) is enlightening. It appears that with respect to 
optimal co-ordinates the time variable and the timelike variable (streamwist! co- 
ordinate) play the same role as that alluded to in $ 4. Furthermore, we have demon- 
strated that an extra variable (such as the time variable in the present context) docs 
not lead to significant changes from Kaplun's work with two co-ordinates. 
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7. Concluding remarks 
Kaplun (1954) limited his analysis of the role of co-ordinate systems in boundary- 

layer theory to incompressible, steady, two-dimensional (plane) flow past a solid body 
without separation, and with an irrotational free stream. Kaplun promised to remove 
those restrictions in a later paper (see Van Dyke 1975), but did not live to write it. 
I n  this paper we have attempted to  point out the generality of Kaplun’s results. 
The underlying feature that allows one to obtain optimal co-ordinates is the use of a 
stream function. This feature is continually utilized in this paper to  remove many 
of the restrictions of Kaplun (1954). Two specific examples were used to illustrate the 
generalizations to a rotational outer flow and to unsteady boundary layers. 

The work of the present paper, as well as that of Kaplun, focussed upon first-order 
boundary-layer theory. This restriction was removed by Legner (197 1). The generaliza- 
tion of the results of the present paper to higher-order boundary-layer approximations 
will be the subject of a subsequent paper. Some discussion on this generalization appears 
in Van Dyke (1975). 
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of Professor Milton D. Van Dyke of Stanford University. Appreciation is also due to 
the National Aeronautics and Space Administration for support given under the NASA 
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